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Abstract

This study explores the application of self-supervised learning techniques, specifically Masked Lan-
guage Modeling (MLM) pretraining, to Human Activity Recognition (HAR) using eye gaze data. The
research focuses on two datasets: DesktopActivity and ReadingActivity, utilizing a Transformer-based
architecture adapted for time series data.

The study compares the performance of MLM-pretrained models against fully supervised models
across various fine-tuning scenarios, with window sizes of 30 and 60 seconds. Results demonstrate
that MLM pretraining generally outperforms fully supervised approaches, particularly when limited la-
beled data is available. The research also investigates the impact of different reconstruction techniques
in the pretraining phase, finding that convolutional layers offer superior performance and efficiency com-
pared to linear layers.

Key findings include the effectiveness of MLM pretraining in learning generalizable features from eye
gaze data and the positive impact of incorporating diverse data sources during fine-tuning. However,
the study also reveals challenges in matching the performance of methods using hand-crafted features
and inconsistencies in results between different window sizes.

The research concludes by proposing several directions for future work, including further investi-
gation of reconstruction phenomena, exploration of cross-activity transfer learning, and potential inte-
gration of insights from hand-crafted feature approaches into deep learning architectures for eye gaze
analysis.
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Nomenclature

Abbreviations

Abbreviation Definition

AR Augmented Reality
VR Virtual Reality
HAR Human Activity Recognition
HCI Human-Computer Interaction
HMD Head-Mounted Display
MLM Masked Language Modeling
NSP Next Sentence Prediction
EOG Electrooculographic
LFI Laser Feedback Interferometry
mRMR Maximum Relevance – Minimum Redundancy
SVM Support Vector Machine
LDA Latent Dirichlet Allocation
RNN Recurrent Neural Network
CNN Convolutional Neural Network
MVTS Multivariate Time Series Transformer
NLP Natural Language Processing
MSE Mean Sqaured Error
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1
Introduction

Recently, with the development of AR and VR, HMDs are becoming popular. HMDs are considered to
be the next ubiquitous wearable devices following smart watches. Among all the techniques used on
applications of wearable devices, HAR is one of the most crucial. The purpose of HAR is to classify
user’s activity and benefit applications, e.g., health monitoring [20], sports performance monitoring [12],
gaming [13] and smart homes [3].

In general, there are two types of scenarios when it comes to methods of HAR, inertial-sensor-based
and video-based [30]. Smart watches and other wearable devices usually leverage the inertial-sensor-
based methods, however, due to differences in nature of wearing HMDs, they usually combine the two
scenarios. HMDs are usually equipped with both inertial sensors and cameras that captures user’s eye
movement. In this project, the original data are video-based eye movement, but the data used for HAR
are inertial-sensor-based-like time series which were extracted from the captured videos.

Though some researches have been conducted by biologists and psychologists showing that eye
movement are related to everyday activities [10, 17, 18] and sports performance [34], no solid conclu-
sion could be drawn revealing the correlation. This is due to the lack of studies in cognitive context
related to eye movements in the past.

The aim of this project is to explore whether state-of-the-art machine learning methods could bridge
the gap of HAR in eye movement without apriori knowledge. The first approach is to leverage the
attention mechanism [29] and verify the performance of a light-weight transformer model. The second
approach is to introduce an MLM pretraining process from BERT [7], it enhances the model’s capability
of learning the hidden pattern beneath the eye movement. At last, the gain in performance and the
decrease in the amount of required samples utilizing the pretraining process is verified.

The specific contributions of this project are: (1) the exploration of a light-weight transformer on
HAR with eye movement data; (2) the performance gain and (3) the decrease in the amount of re-
quired samples with an MLM pretrain process in addition to the light-weight transformer. Though these
contribution are no solid conclusion to the hidden pattern in eye movement, they reveal more about the
correlation between eye movement and different activities.
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2
Related Work

The work in this project is related to previous works on: (1) recognition of user’s cognitive context
with eye movement, (2) state-of-the-art machine learning algorithms and (3) unsupervised learning
mechanisms applied on ubiquitous computing.

2.1. Cognitive Context Recognition with Eye Movement
Eyemovement analysis has a long history which dates back more than a hundred years. Humans’ eyes
are constantly in motion, e.g., saccades, smooth pursuit and vergence movements, however, humans
still maintain a stable and continuous visual world. Understanding how visual information is processed,
and how eye movement impacts the visual perception is the key to recognizing the cognitive context.

During the early years, in 1900, Dodge [8] discussed the visual perception during eye movement
while reading, he concluded that a smooth visual transition from word to word or line to line is important
to maintain efficiency and accuracy. In 1924, during the change from vertical text alignment to horizontal
in China, Shen [26] measured the number and duration of fixation-pauses made reading the same text
in both manners using photographic technique. Shen [26] warned about the trend by concluding that
reading horizontally is less efficient than vertically. It was not until the late 20th century when researches
on the relationship between eye movement and cognitive context were conducted. In 1998, Rayner
[24] categorized and summarized studies conducted during the past 20 years revealing the cognitive
context of eye movement. E.g., movement performing ‘reading’1 and ‘searching’2 are similar, but have
important differences; stuttering children make more fixations3 and regressions4 than non-stutterers;
reading contrapuntal music tends to generate a horizontal series of saccades followed by a vertical
movement, while reading homophonic music results in a vertical fixation sequence alternating from
one half to the other, etc. These are early evidences of eye movement revealing the human’s cognitive
context.

Nowadays, as data are more achievable with technologies, researches revealing the cognitive con-
text beneath eye movement are conducted utilizing EOG, eye gaze, IMU, LFI data, etc. Bulling et al.
[4] devised hand-crafted features on eye movement using a wearable EOG systems. 70.5% overall
accuracy was achieved with a 30 seconds sliding window and 0.25 seconds step size using mRMR and
SVM identify 5 commonly performed working activities. Kunze et al. [15] conducted a research iden-
tifying different types of documents reading based purely on extracted features from eye gaze data.
They measured an accuracy of 74% with a 1 minute sliding window using J48 decision tree classifier.
Steil and Bulling [28] proposed a method focusing on long-term activity recognition in an unsupervised
manner. The method encodes recorded eye movement in bag-of-words representation and classifies
via an LDA topic model. The result shows that the achieved accuracy is competitive of supervised SVM
method. With the rise of deep learning mechanisms, Meyer et al. [22] introduced 1D-CNN to HAR with

1normal reading behaviour, left to right, up to down
2searching for target word/letter in less meaningful text, e.g., letter strings
3eyes remain relatively still for about 200-300 ms
4right-to-left movements along the line in English reading or movements back to previously read lines are regressions
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2.2. State-Of-The-Art Machine Learning 3

LFI eye movement data combined with IMU head movment data. They achieved an 88.15% accuracy
with transfer learning and 80.98% without.

2.2. State-Of-The-Art Machine Learning
As Transformer was introduced by Vaswani et al. [29], it outperformed all the predecessors, e.g., RNNs
and CNNs, in the tasks of achieving the highest scores in English-to-German and English-to-French
translation. With the use of attention mechanism introduced by Bahdanau, Cho, and Bengio [1], Trans-
former not only solved the limitations in retaining information between two pieces of information that
are far apart. It also utilized GPU resources better, leading to shorter model training time.

It was later proven that the Transformer architecture performed well on other tasks besides trans-
lation. A lot of other researches based on Transformer achieved extremely high accuracy on tasks
in other fields, i.e., BERT [7] in natural language understanding, ViT [9] in image recognition, TimeS-
former [2] in video classification, DETR [5] in object detection, ViLT [14] in language-vision multimodality
downstream tasks, etc.

Given that Transformer constitutes the state of the art performance for various tasks, applying it to
HAR utilizing eyemovement data in this project is naturally thought of. Classification of time series tasks
are dominant by non-deep learning methods, e.g., HIVE-COTE [23], ROCKET [6] and TS-CHIEF [27].
However, there are also Transformer-based models that showed superior performance in time series
forecasting and imputation [19, 21]. Zerveas et al. [33] proposed a Transformer-based framework which
outperformed most of the existing methods for classification on multivariate time series. The framework
is used in this project.

2.3. Unsupervised Learning on Ubiquitous Computing
As mentioned previously, BERT is a Transformer-based model proposed by Devlin et al. [7] which
achieved state-of-the-art performance on natural language understanding. Leveraging two unsuper-
vised pretraining tasks is a reason of it achieving superior performances. The two tasks are masked
language modeling (MLM) and next sentence prediction (NSP). The earlier task masks certain amount
of words in a sentence and the model would predict what the missing words originally are, while the
later one predicts whether the two sentences come one after another. MLM enhances the model’s
ability to learn the relation between words, and NSP enables the model to understand longer-term
dependencies across sentences.

Xu et al. [32] employed the idea of BERT in the task of HAR with mobile IMU data and proposed
LIMU-BERT. In order to adapt the multivariate time series IMU data, several modifications are made
to the original BERT architecture. The adjustments include normalization of the original data, loss
function and the masking mechanism of the MLM pretrain task. LIMU-BERT only adopted MLM as the
pretraining task, as the tasks are classifications rather than forecasting, and the temporal relations and
feature distributions in IMU data is the prior learning task for the model. The result shows that LIMU-
BERT can not only outperform existing approaches in most of the HAR tasks with IMU data, but also
achieve a much higher accuracy compared to others when there are limited amount of labeled data.
The idea of MLM pretrain task is also introduced in this project, as it is one of the reasons LIMU-BERT
remains robust when labeled data are limited.



3
Methods

3.1. Model Architecture
The main architecture of the model is based on the multivariate time series transformer framework
(mvts) [33], adjustments to the architecture are mentioned in detail when necessary. The mvts shares
a very similar structure as the original Transformer without the decoder [29], as shown in Figure 3.1.
During the fine-tuning phase following MLM pretraining, we replace the ‘Reconstruction’ linear layer
with a classifier and switch the loss function from MSE to cross-entropy loss. Figure 3.2 shows the
generic part of the model, which is common across pretraining and fine-tuning.

In particular, each sample X ∈ Rw×m, with sequence length w and m feature dimensions, consists
of a sequence of w feature vectors xt ∈ Rm = [x1, x2, ..., xw]. Initially, the feature vectors are standard-
ized. Values from each dimension are subtracted by the mean and divided by the variance computed
across all data. The vectors xt are then each linearly projected onto a d-dimensional space, where d
is the dimension of the representation of each time step in the transformer model. The d-dimensional
representation space is referred as model dimension:

ut = Wpxt + bp (3.1)

where Wp ∈ Rd×m, bp ∈ Rd are parameters and ut ∈ Rd, t = 0, ..., w are the feature vectors, which
correspond to word vectors in the original Transformer [29]. Positional encoding, which compensates
for the Transformer architecture’s insensitivity to the order of input, is added to these feature vectors.
Unlike the original Transformer that uses a deterministic sinusoidal pattern [29], this work employs a
fully learnable positional encoding, which has shown improved performance in empirical studies [33].

Despite conventional use of layer normalization in NLP tasks due to its ability to handle the variability
of input sequence length, and preserve the independence among data points. In this work, batch nor-
malization is employed following experiments [33] that suggest it provides a substantial performance
advantage by mitigating the effect of outliers. In the work of mvts [33], the placement of normalization
is not specified. It has been found out from the source code that the normalization is directly placed in
a post-norm fashion, as shown in Figure 3.3. However, several empirical [11, 25] and theoretical [31]
studies advocate for a pre-norm design in Transformer architectures. This earlier placement of normal-
ization layers has been shown to stabilize the training process and potentially enhance performance.

3.2. MLM Pretrain
In the context of NLP, MLM involves randomly masking some words in the input sentences and training
the model to predict these masked words based on the surrounding context. Similarly, for time series
data, MLM is adapted by masking out certain time steps (values) and training the model to predict
these masked values from the surrounding data points. This method helps the model learn the under-
lying patterns and dependencies within the time series data. The corresponding setup is depicted in
Figure 3.4.

The masking process begins when loading the data. A binary noise mask M ∈ Rw×m is created
independently for each training sample, where 0 indicates amasked value and 1 indicates an unmasked

4
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Figure 3.1: Architecture of mvts MLM pretraining task

Figure 3.2: Generic model architecture overview
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Figure 3.3: Post-norm (a), and Pre-norm (b). Different placement of the normalization layer in the Transformer encoder block

Figure 3.4: Setup of MLM unsupervised pretraining
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value. Themasked input is then created through an element-wisemultiplication: X̃ = X⊙M . The noise
mask is generated independently for each feature, masking on average a proportion r of each feature
dimension over length w. The generation of masked segments for each feature follows a geometric
distribution with a mean length lm, leaving unmasked segments with mean length lu = 1−r

r lm. Mean
masked length lm = 3, and masking ratio r = 0.10 is chosen for all the experiments in this work,
slightly differ from the settings in mvts where r = 0.15 [33]. The benefit of generating the noise mask
with geometric distribution, rather than a Bernoulli distribution for each time step, avoids the problem
of easily predictable short masked sequences. A good approximation could be achieved predicting
short masked sequences by replicating surrounding values. In order to obtain long masked sequences
with a Bernoulli distribution, a high r is required, making the task excessively difficult. According to
the findings in mvts [33], using a geometric distribution for the masking scheme proves more effective
for denoising and encourages the model to attend both to preceding and succeeding segments, as
well as to contemporary values of other variables in the series, thereby enhancing its ability to model
inter-dependencies between variables.

A linear reconstruction layer with parameters Wo ∈ Rm×d, bo ∈ Rd is used to obtain the estimation
x̂t of input xt at each time step from the representation zt ∈ Rd in the model dimension space. However,
only predictions for the masked values (with indices in the set M(t,i) ≡ {(t, i) : mt,i = 0}, where mt,i

are elements of the generated binary mask) are considered in the MSE loss calculation:

x̂t = Wozt + bo (3.2)

LMSE =
1

|M |
+

∑
(t,i)∈M

(x̂(t,i) − x(t,i))
2 (3.3)

3.3. Input Projection & Reconstruction
The model architecture described in Section 3.1 initially employed a linear projection to project each
sample X ∈ Rw×m (with sequence length w and m feature dimensions) onto a d-dimensional space.
Correspondingly, during the MLM pretraining, a linear reconstruction layer was used to project each
sample back onto the m-dimensional space.

However, empirical evidence presented in Section 4.3 suggests that this combination of linear pro-
jection and reconstruction layers fails to effectively capture the underlying data patterns during pretrain-
ing. Instead, it tends to learn only the mean differences among data points within each sample.

To address this limitation, we propose replacing the linear projection layer with a 1D convolution
layer. This change allows for the extraction of more meaningful representations of low-dimensional
features. For reconstruction, we implement a 1D transposed convolution operator followed by a linear
layer. This approach better preserves the spatial relationships in the data. A clear comparison of the
reconstructed data is presented in Section 4.3.

However, a consequence of using 1D convolution is the alteration of sequence length. Moreover, the
1D transposed convolution with identical configurations does not always reconstruct samples to their
original sequence length. The sequence lengths after convolution (Lconv) and transposed convolution
(Ltconv) are governed by the following equations:

Lconv =

⌊
Lin + 2P −D(K − 1)− 1

S
+ 1

⌋
(3.4)

Ltconv = (Lconv − 1)S − 2P +D(K − 1) + 1 (3.5)
Where Lin is the input sequence length, P is padding, D is dilation, K is kernel size, and S is

stride. To ensure consistency between the reconstructed and input sequence lengths, we incorporate
an additional linear layer following the transposed convolution. This revised architecture leverages the
strengths of convolutional operations while maintaining the required dimensionality during the MLM
pretraining task.

3.4. Classification
The model architecture presented in Section 3.1 and illustrated in Figure 3.1 can be adapted for classifi-
cation tasks by replacing the final reconstruction layer with a classification linear layer. This modification
allows the model to leverage the pretrained representations for downstream classification tasks.
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In this configuration, the final feature vector zt ∈ Rd corresponding to the sequence length l (l = w if
the input projected linearly, else calculated with Equation 3.4) is flattened into a single vector z ∈ Rl×d.
This flattened vector then serves as input to the linear classification layer with parametersWo ∈ Rn×(d×l)

and bo ∈ Rn, where n represents the number of classes:

ŷ = Woz + bo (3.6)

The predictions ŷ are subsequently passed through a softmax function to obtain the probability distri-
bution over classes. The cross-entropy between this distribution and the ground truth labels constitutes
the sample loss for optimization.

In the mvts framework [33], it is possible to freeze all pretrained weights except for the classifica-
tion layer. However, empirical studies presented in [33] demonstrate a trade-off between speed and
performance. Specifically, freezing weights results in faster training speed but comes with lower per-
formance, while fine-tuning all weights leads to improved performance at the cost of increased training
time.

Considering this trade-off, our work adopts the approach of allowing all weights to be trained in
both the pretraining and fine-tuning (classification) tasks. As the goal of our work prioritizes model
performance over computational requirements.



4
Results

4.1. Datasets and Signal Preprocessing
This study utilizes two datasets for empirical evaluation: DesktopActivity [16] and ReadingActivity [15].
The DesktopActivity dataset consists of data collected from eight subjects at a sampling rate of 30 Hz
while performing six common desktop activities: browsing, playing, reading, searching, watching, and
writing. The ReadingActivity dataset, also sampled at 30 Hz, contains data from nine subjects engaged
in reading six different document types: magazines, manga, newspapers, novels, scientific papers, and
textbooks.

As the original works associated with these datasets did not fully specify their preprocessingmethod-
ologies, we detail our approach here. For both datasets, we employ a two-step preprocessing method.
First, all data are standardized followed by normalization on a subject-activity-specific basis. This
approach enhances robustness against sensor drift over time and variations in hardware calibration
across subjects. Second, the preprocessed data is segmented into samples using a sliding window.
Window sizes vary from 30 to 60 seconds, with a consistent overlap of 80% between adjacent windows.
This preprocessing pipeline ensures data consistency and facilitates subsequent analysis and model
training.

4.2. Experimental Design
Our experimental methodology comprises two distinct phases: hyperparameter optimization andmodel
evaluation. This approach enables a comprehensive assessment of our proposed techniques while
simulating realistic application scenarios.

For hyperparameter optimization, we employ a fully supervised, leave-one-subject-out cross-validation
strategy. During this phase, we omit the MLM pretraining to focus on the core model architecture. To
mitigate overfitting, we always implement a random split of 80% training and 20% validation data within
each fold of the cross-validation.

Following hyperparameter optimization, we train and evaluate two model variants weighted f1-score
indicating respective performance:
MLM-pretrainedmodel: This model undergoes unsupervised MLM pretraining using all available data,
as this phase does not require labels. Subsequently, it is fine-tuned in a supervised manner using a
subject-dependent strategy. The fine-tuning data consists of the initialX% of samples from the subject
for fine-tuning, along with Y% of the labels from other subjects available during the MLM pretraining
phase, where X ∈ [0.1, 0.3] and Y ∈ [0.0, 1.0].
Fully supervised model: This variant is trained solely on the labeled data available during the fine-
tuning phase of the MLM-pretrained model. To compensate for the lack of pretraining, this model is
trained for a greater number of epochs.

This evaluation approach is designed to align with potential real-world applications. In practice,
personalized applications often require individual user data for specific activities. The fine-tuning data
used in our experiments simulates this scenario by utilizing a continuous segment of personal data
collected over a limited time period. This approach aims to recognize similar behaviors committed
subsequently, mirroring the operational requirements of practical applications.

9



4.3. Input Projection & Reconstruction Comparison 10

(a) Convolution Reconstructing Layer (b) Linear Reconstructing Layer

Figure 4.1: Comparison of reconstruction methods: (a) Convolution layer reconstruction, demonstrating improved accuracy in
following the original data trend. (b) Linear layer reconstruction, showing a tendency to converge towards the mean value for

masked continuous data points.

This comparative approach allows us to assess the impact of MLM pretraining on model perfor-
mance under various data availability scenarios. For a comprehensive list of specific hyperparameters
used in these experiments, please refer to Table 4.1.

Parameter Value
activation gelu
dropout 0.1
unsupervised learning rate 0.0001
supervised learning rate 0.001
batch size 64
warmup/total epochs ratio 1/9

Table 4.1: Hyperparameters used in the experiments

4.3. Input Projection & Reconstruction Comparison
Figure 4.1 presents a comparison of reconstruction results using different layer types in the MLM pre-
train task. Panel (a) shows the superior reconstruction achieved by the convolution layer, which closely
follows the original data trend. In contrast, panel (b) illustrates the results from a linear layer, where
predictions for masked continuous data points tend to converge towards the mean value.

This behavior is similar to the problem of minimizing MSE between a constant value and a variable.
While predicting the mean value of masked points can indeed minimize the MSE loss, it does not
necessarily provide a good reconstruction of the original data points. The MSE loss for masked values
is given by:

LMSE =
1

|M |
∑

(t,i)∈M

(x̂(t,i) − x(t,i))
2 (4.1)

where M is the set of masked indices, x̂(t,i) is the predicted value, and x(t,i) is the true value.
It can be proven that if x̂(t,i) is predicted as a constant value, the mean value of all masked points

minimizes this loss. Let’s define the mean of the masked values:
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x̄ =
1

|M |
∑

(t,i)∈M

x(t,i) (4.2)

To prove that using x̄ as the prediction for all masked values minimizes the MSE loss, we consider
a general prediction x̂ and show that the MSE is minimized when x̂ = x̄. The MSE loss is:

LMSE(x̂) =
1

|M |
∑

(t,i)∈M

(x̂− x(t,i))
2 (4.3)

To find the minimum, we differentiate with respect to x̂ and set it to zero:

∂LMSE

∂x̂
=

2

|M |
∑

(t,i)∈M

(x̂− x(t,i)) = 0 (4.4)

Solving this equation yields:

x̂ =
1

|M |
∑

(t,i)∈M

x(t,i) = x̄ (4.5)

This proves that if x̂(t,i) could only be predicted as a constant value, the mean value x̄ minimizes
the MSE loss. To confirm it’s a minimum (not a maximum), we check the second derivative:

∂2LMSE

∂x̂2
=

2

|M |
∑

(t,i)∈M

1 = 2 > 0 (4.6)

Since the second derivative is positive, this confirms that x̄ gives the global minimum of the MSE
loss for this constrained problem.

However, it is important to note that this is not the actual scenario in our model. The linear re-
construction layer with parameters Wo ∈ Rm×d and bo ∈ Rd can deliver predictions that vary among
different time steps:

x̂t = Wozt + bo (4.7)

Furthermore, even if constant prediction as the mean of several masked data points could minimize
the MSE loss under some circumstances, it fails to capture the temporal dynamics and local patterns
present in the data, which are crucial for accurate reconstruction.

The reason for this issue is not immediately apparent, as the linear layer should theoretically be
capable of reconstructing whatever the 1D convolution and transpose convolution could produce. One
possible explanation is that convolution and transposed convolutions inherently account for more local-
ity in the data. This property is particularly beneficial for eye gaze data, which consists of rich features
that exist locally, such as saccades and fixations [15, 16].

In our work, we have found that using convolution and transposed convolution layers as the projec-
tion and reconstruction layers yields better results compared to using linear layers. This improvement
is observed not only in reconstruction quality but also in computational efficiency. Specifically, training
one epoch with linear layers takes approximately 12.84 seconds, while the convolution layers reduce
this time to just 2.33 seconds, which is an increase of x5.5 in speed1.

4.4. Experimental Results
We present the results of our experiments for both DesktopActivity and ReadingActivity datasets, fo-
cusing on a window size of 30 seconds. The results for the 60-second window will be included in the
appendix. These results demonstrate the performance of our MLM-pretrained model compared to the
fully supervised model across various fine-tuning scenarios.



4.4. Experimental Results 12

0.0 0.2 0.4 0.6 0.8 1.0
Upstream Label Availability

0.30

0.35

0.40

0.45

0.50

0.55

Pe
rfo

rm
an

ce
Performance vs. Upstream Label Availability for Window Size 30

Groups
Downstream 0.1, Pretrained False
Downstream 0.1, Pretrained True
Downstream 0.2, Pretrained False
Downstream 0.2, Pretrained True
Downstream 0.3, Pretrained False
Downstream 0.3, Pretrained True

Figure 4.2: DesktopActivity: Performance comparison between MLM-pretrained and fully supervised models. Solid lines
represent the performance with pretraining, and dotted lines represent performance without pretraining.

4.4.1. DesktopActivity Results
Figure 4.2 illustrates the performance comparison for the DesktopActivity dataset.

As observed in Figure 4.2, the MLM-pretrained model consistently outperforms the fully supervised
model, with one exception: when upstream label availability is 10% and downstream label availability
is 10%. We have also noticed two patterns: (1) increasing the percentage of data from other subjects
during fine-tuning generally improves performance, and (2) the more data available from other subjects
during pretraining also contributes to an increase in performance. However, these patterns observed
in the 30-second window results do not necessarily apply when the window size is increased to 60
seconds. These differences will be discussed in Chapter 5.

4.4.2. ReadingActivity Results
Figure 4.3 presents the performance comparison for the ReadingActivity dataset.

The results for ReadingActivity, as shown in Figure 4.3, reveal some interesting patterns. Similar
to the DesktopActivity results, the MLM-pretrained model generally outperforms the fully supervised
model, with a few exceptions. For the 30-second window (Figure 4.3), we observe that the perfor-
mance improvement from incorporating more data from other subjects is less pronounced compared
to the DesktopActivity results. This suggests that reading activities might have more individual-specific
patterns that are less transferable across subjects. This might also explain the decrease in perfor-
mance when downstream available data is 20% and 30%, as the upstream data availability increases.
The reason for this phenomenon remains unknown and requires further investigation.

In both datasets and across both window sizes, we observe that the MLM-pretrained model’s perfor-
mance is more stable and generally superior, highlighting the effectiveness of our proposed approach
in leveraging unlabeled data and enhancing model generalization.

1timing measurements were obtained by pretraining the same model with samples of 15-second window size on a laptop with
an Intel i7-11800H CPU and an NVIDIA RTX3060 Mobile GPU.
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Figure 4.3: ReadingActivity: Performance comparison between MLM-pretrained and fully supervised models. Solid lines
represent the performance with pretraining, and dotted lines represent performance without pretraining.



5
Conclusion & Recommendations

5.1. Conclusion
Our study on MLM pretraining for eye gaze data analysis has yielded several important findings:
MLM Pretraining Effectiveness: In general, the MLM-pretrained model performs better than the fully
supervised model for both DesktopActivity and ReadingActivity datasets. This suggests that MLM
pretraining is effective in learning generalizable features from eye gaze data.
Data Availability Impact: Increasing the percentage of data from other subjects during fine-tuning
generally improved model performance. This indicates that incorporating diverse data sources can
enhance the model’s ability to generalize across subjects.

These findings demonstrate the potential of MLM pretraining in improving eye gaze data analysis.
However, it is worth noting that none of these performances have reached the level claimed in other
studies where hand-crafted features were utilized to perform the same classification tasks. This gap
highlights the need for further research and refinement of our approach.

5.2. Recommendations for Future Research
Based on our results and the limitations identified in this study, we propose the following suggestions
for further investigation:

5.2.1. Further Investigation of Reconstruction Phenomena
While our current study has yielded significant insights into the behavior of the MLM pretraining pro-
cess for eye gaze data, several avenues for future research have emerged. We propose the following
investigations to further enhance our understanding and improve the model’s performance:
Extended Masking Experiments: Future work should explore the impact of varying mask lengths on
reconstruction quality. Our preliminary observations suggest that shorter masks lead to better recon-
structions, while longer masks tend to result in mean-value predictions. A research of this phenomenon
could provide valuable insights into optimal masking strategies for eye gaze data.
Feature Analysis: An in-depth analysis of which features are most accurately reconstructed versus
those that default to mean-value predictions could offer crucial insights. This investigation may reveal
which aspects of eye gaze data are more predictable from context, potentially informing both model
design and our understanding of eye movement patterns.
Reconstruction Techniques: Given our findings that the linear reconstruction layer, while theoret-
ically capable of complex reconstructions, tends to favor simpler mean-value predictions for longer
masked sequences, future work should explore more sophisticated reconstruction methods. Potential
approaches include developing more advanced decoder architectures tailored to the specific charac-
teristics of eye gaze data, incorporating tasks that explicitly encourage the preservation of temporal
patterns in the reconstructed data, and investigating alternative loss functions or additional constraints
that penalize mean-value predictions and reward reconstructions that better preserve the temporal
dynamics of the original data.

These proposed investigations aim to address the current limitations in our model’s reconstruction
capabilities, particularly for longer masked sequences. By pursuing these research directions, we hope

14
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to develop more accurate and robust models for eye gaze data analysis, ultimately leading to improved
performance in downstream tasks and a deeper understanding of eye movement patterns. Based on
engineering so far, where to go next.

5.2.2. Model Architecture Optimization
The observed differences between 30-second (Section 4) and 60-second (Section 6) window results
raises requirements for further studies. While the 30-second window shows results that follow our
expectations, the 60-second window not only deviates from expectations but also shows significantly
poorer performance. This unexpected outcome raises questions about the suitability of our current
model architecture for longer sequences. Future research should aim to investigate the causes of
performance decrease in longer window sizes and exploremodifications to the Transformer architecture
to better handle longer temporal dependencies in eye gaze data. Additionally, consideration should
be given to alternative architectures that might be more suitable for capturing long-range patterns in
time series data. Simpler architectures such as temporal convolutional networks may deliver better
performances.

5.2.3. Cross-Activity Transfer Learning
Given the differences observed between DesktopActivity and ReadingActivity, exploring the transfer-
ability of pretrained models across different types of activities could lead to more general and robust
models for eye gaze analysis. However, before diving deep into transferring learned features, we
suggest conducting a thorough analysis of the current model’s decision-making process. This should
include investigating which features the model extracts and relies on for classification, as well as inter-
preting what aspects of the eye gaze data are most influential in the model’s predictions. This deeper
understanding of the model’s behavior will inform more effective transfer learning strategies and po-
tentially reveal insights into the fundamental differences between eye movement patterns in various
activities.

5.2.4. Bridging the Gap with Hand-Crafted Features
Given that our current approach has not yet matched the performance of methods using hand-crafted
features, future work should focus on analyzing successful hand-crafted features to understand what
information they capture. This analysis could provide inspiration for designing a new type of deep
learning architecture. The goal would be to develop a neural network architecture specifically dedicated
to eye gaze analysis, potentially incorporating insights from traditional feature engineering approaches.
By combining the strengths of hand-crafted features with the flexibility and power of deep learning,
we may be able to create more effective and specialized models for eye gaze data processing and
classification.
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Figure 6.1: ReadingActivity (60sec window): Performance comparison between MLM-pretrained and fully supervised models.
Solid lines represent the performance with pretraining, and dotted lines represent performance without pretraining.
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Figure 6.2: ReadingActivity (60sec window): Performance comparison between MLM-pretrained and fully supervised models.
Solid lines represent the performance with pretraining, and dotted lines represent performance without pretraining.
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