Smartphone Sensing 2023
App 3, Option 2
group 9
Samsung Galaxy A13, Android 13

1 Load balance

1.1 Tony Yang, 5651794
e Android Method

— Online RSS-KNN location classification
— 1D Spectral Contrast

o Off-line Method
— Explore novel ML techniques
e Tasks and Deliverable

— Gather RSS & acoustic data

Giacomo Mazzola, 4872673
e Android Method

— Fix and Improve CNN model
e Off-line Method

— Fix and Improve CNN model
e Tasks and Deliverable

— Gather acoustic data

2 Introduction

We present “AERSS”, our final app, designed to accu-
rately detect locations across 16 cells on the 2nd floor
of Building 28. This is achieved by utilizing both RSS
and Acoustic Echo Recognition. Please note that
the gained accuracy will all be summarized in
Section 5.

3 Acoustic Signals & Feature Extraction

3.1 Description

Our probe signal design and echo recording method
remain the same as described in the second report.
For feature extraction, a spectral contrast 1D ar-
ray is computed, mirroring the magnitude spectro-
gram’s length. Each contrast array position is given a
value—the difference between the maximum and mini-
mum values in the same frequency bin of the magnitude
spectrogram. This method is favored for its robustness
against noise, a necessity due to the substantial random
noise generated by the phone’s low-quality embedded
microphone.

The outcome of feature extraction is immediately
displayed on the GUI. As demonstrated in figure 1,

Full Spectrogram

rereee

Figure 1: Part of GUI which shows three spectrograms

the three spectrograms correspond to the complete
500ms recording, the extracted 150ms recording (after
omitting the chirp signal), and the further extracted
spectrogram from 12kHz to 13kHz.

It’s worth noting that the spectrogram contrasts
are plotted relatively to highlight the patterns.
As illustrated by the top-left spectrogram in figure 1,
the magnitude of the echo is minuscule compared to the
chirp signal. Therefore, we adjust the contrast for each
spectrogram relatively. This is achieved by identifying
the maximum and minimum values in the spectrogram
and then reassigning magnitude values.

3.2 Unsuccessful attempt

We considered and attempted to use MFCC, but given
its complex processing requirements on the magnitude
spectrogram, we could not implement it successfully.

Each value in the magnitude spectrogram was
initially multiplied by a "magic factor" of 2.4
and capped at 255 with the intention of further
enhancing the pattern, making it easier for our deep
learning models to identify the pattern. However, we
later discovered that this amplification also intensified
the noise, causing a slight dip in accuracy. We then
considered training the model with the enhanced spec-
trogram and testing it with lightened ones (adjusting
the magic factor to around 1.5 and capping each value
at 255). This, however, also negatively impacted accu-
racy. Consequently, we abandoned the idea of further
enhancing the spectrogram, keeping it relatively un-
touched after plotting.

3.3 Novelty
e 1D Spectral Contrast

e Real-time plotted spectrograms

e Relative contrast spectrograms



Training and Validation Accuracy

—— Train Accuracy Jorteie

"
val Accuracy vy

80+

60 -

Accuracy

20 f

y T T T T
o 50 100 150 200 250
Epochs

Figure 2: Comparison between testing and validation
accuracy for 16-cells CNN model

Confusion Matrix
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.38 0.50/0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.14 0.00 [l 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 BHN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 K]

1
2

3

4

510.00 0.00 0.00 0.00 {34 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
6

7

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
9

True Label

0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 K54 0.00 0.00 0.00 0.08 0.00 0.00 0.00

10 {0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 [UELH 0.00 0.00 0.00 0.00 0.00 0.00 L o4

11 {©.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 LN 0.00 0.14 0.00 0.00 0.00

12 {0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 BMN 0.00 0.00 0.00 0.00

13 {0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00 [X:i:}0.00 0.00 0.00
F02

14 /0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 PX:EN0.00 0.00

15 {0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 pMiLY 0.00

16 {0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 [K:E]

R T T T T T T~ B, VR, VR T )

Predicted Label

Figure 3: Confusion matrix for the 16-cells CNN model

4 Machine Learning Models

4.1 Description

After gathering acoustic data for all cells, the model
was extended to classify all the 16 cells. The model
was experiencing over-fitting at first, which was mit-
igated quite well by introducing a drop_rate=0.2 in
between the two fully connected layers. Figure 2 re-
ports the testing and validation accuracy to prove that
over-fitting is minimal, if not absent, in the new model.

The accuracy achieved by validating the model of-
fline is 86%. By inspecting the confusion matrix in
figure 3, it can be noticed that the major reason why
the accuracy is not close to 100% is explained by the
low accuracy between classes C4, C5 and C6, which
are identical spots on an internal staircase of building
28. Our novelty approach fixed this issue as described
in the following section.

4.2 Unsuccessful attempt

The main problem of this model is that, when exported
to android, it features an accuracy close to random.
To solve this problem, we tried multiple approaches of
which:

e Migrate the model to TensorFlow

e Use the ONNXRuntime ! library to export the
CNN to android without comprossing the model,
as opposed to the PyTorch JIT method, which re-
sults in changes to the network.

Unfortunately neither of these approaches worked as
intended. Therefore, we fixed this problem by intro-
ducing the novel approach described in the next sub-
section.

We also attempted to implement BNN using the Larq
library in Tensorflow. However, we encountered issues
with weight binarization and therefore had to aban-
don this approach. We also tried collecting data at
a very high speed, as suggested in Qun’s paper, but
it proved ineffective. To ensure that each data point
gathered contains 150ms of usable audio information,
we adjusted our collection pace to approximately one
datum every 2 seconds.

4.3 Novelty

Instead of deploying one CNN that classifies 16 cells
with lower frequency, we deploy two CNNs that clas-
sify less classes with higher accuracy. We also deploy
two KNN models trained on RSS data. The first KNN
model is used to detect the side of the building the user
is located, either west or east, and based on this, one
of the two CNNs is selected to be fed with the spec-
togram. The second KNN is used to achieve high ac-
curacy for cells C4, C5 and C6. when one of these cells
is classified by the CNN, since they are characterized
by very similar features, we use the KNN to determine
the floor the user is located at and therefore, determine
the accurate cell.

This approach was chosen because we found that a
CNN trained with data from 9 cells performed excel-
lently. However, when data from a 10th cell was added,
it compromised the model’s performance. Therefore,
we opted for deploying two separate CNN models. This
strategy also leverages the “KNN-+RSS” knowledge
from class, aiding in identifying the building area and
deciding which model to activate.

For the purpose of gathering acoustic data, a spinner
was designed, including the names “C1” to “C16”, as
depicted in figure 4. Moreover, a separate app, shown
in figure 5, was created for the purpose of gathering
RSS data and arranging them in the format we desire.
Detailed source code can be found at [2].

We've designed a user-friendly Python script for
training purposes [1]. It’s quite simple that all data
is placed into a directory, with each subdirectory rep-
resenting a unique class. After defining the propor-
tions of validation and testing data, the training pro-
cess initiates automatically and independently saves
the model. Given the relatively small size of the col-
lected data, we allocated 80% of it for training, with
the remaining 20% split evenly between validation and
testing.

Thttps://onnxruntime.ai/docs/get-started /with-java.html



Gather cell C8 data

Figure 4: Part of GUI dedicated to collecting data

Figure 5: Independent app dedicated to gather RSS
data

5 Indoor Localization

5.1 Description

As discussed in the previous section, we have deployed
four ML models online. To allow users to test all our
models, we created two switches. Users can choose to
“only use CNN trained over 16 cells,” “activate RSS
on top of CNN trained over 16 cells,” or “activate RSS
+ 2 CNN models,” as illustrated in figure 6.

We also simulated app evaluation. We tapped the
tracking button five times and recorded the accuracy
of each cell using all three options, as displayed in fig-
ure 7. The “Duo CNN + RSS” configuration evidently
achieves the highest average accuracy. However, it has
the drawback of excluding cell C10 because its inclu-
sion disrupted the overall model during training. Fur-
ther adjustments to rectify this issue will be reported
during the evaluation phase.

Please note that all the features and methods dis-
cussed so far, including the feature extraction meth-
ods and the ML models (2 CNN + 2 KNN), are
implemented online. However, it’s worth mentioning
that our model currently lacks robustness against inter-
ference. Nonetheless, as we will discuss in the following
section detailing our work plan for the week prior to
the evaluation, it’s highly probable that our model will
be able to tolerate a certain level of interference.

5.2 Unsuccessful attempt

In using KNN + RSS, our initial idea was to repre-
sent the west and east sides of the building as two dis-
tinct points. After each Wi-Fi scan, the area with the
smaller Euclidean distance was designated as the cur-
rent location. However, this method proved ineffective.
A thorough investigation wasn’t carried out, but our
intuition suggests that the Euclidean distance measure
is more effective when points have overlapping Wi-Fi
access points. Calculating the Euclidean distance be-
tween two MAC addresses does not yield an accurate
“real distance”. We resolved this issue by using KNN

Figure 6: Final App

Accuracy for Three Options of Acoustic Tracking

Accuracy (%)
g
K

10% | —e— Single 16 cell CNN
single 16 cell CNN + RSS
0% { —8— Duo CNN + RSS

6 @ @ @ ¢ G ¢ 8 € Clo Cll C2 C3 Cl4 Cl5 Cl6
Label

Figure 7: Accuracy comparison

to identify 16 cells. If the result lies between 1 to 10,
it is classified as west, and east otherwise.

5.3 Novelty

e Flexible options for users

6 Future Work

In the following week before the evaluation, we are go-
ing to try to improve even more the app by working on
the following points:

e Collect more samples. In fact, because we changed
the way to gather samples, we had to start collect-
ing them from scratch. Our goal is to reach at least
1000 samples for each cell. Including samples with
more disturbance from the environment.

e Try to fix the current problems with the CNN and
make it reach a high accuracy classification on 16
cells.

References

[1] Tony Yang & Giacomo. Phone-Sensing-ML. https : / /
github . com/tonyyunyang/Phone - Sensing-ML. Accessed:
2023-06-12. 2023.

[2] Tony Yang. Android-Gather-WIFI-New. https://github.
com/tonyyunyang / Android - Gather - WIFI - New. Accessed:
2023-06-12. 2023.



