
Smartphone Sensing 2023
App 2, Option 2

group 9
Samsung Galaxy A13, Android 13

1 Load balance

1.1 Tony Yang, 5651794

• Android Method

– Plot spectrogram, and save as image

– Automated functions for data gathering

• Off-line Method

– Exploring RNN + CNN for novelty points

• Tasks and Deliverable

– Gather part of training/testing data

1.2 Giacomo Mazzola, 4872673

• Android Method

– Deploy CNN model online

• Off-line Method

– CNN implementation for spectrogram

• Tasks and Deliverable

– Gather part of training/testing data

2 Methods

2.1 Signal Optimization

The chirp signal, varying from 12kHz to 13kHz, is de-
liberately omitted for a period of 10ms. Initial analysis
of environmental noise established the frequency range
above 10kHz as noise-free. However, a correlation was
later detected: an increase in chirp signal frequency
corresponds to a decline in power. A frequency range
between 12 and 13kHz has been determined to yield
optimal results. Consequently, the omission duration
has been aligned with this pattern, being extended to
10ms.

2.2 Real-Time Spectrogram

For on-the-fly integration of the neural network, real-
time plotting of the spectrogram is required. Lever-
aging the Apache Commons Mathematics Library [1],
Fast Fourier Transform (FFT) is performed, facil-
itating the execution of Short-Time Fourier Trans-
form (STFT). The related values for FFT and STFT
are set as FFT size = Window size = 256, Window

type = Hann, Overlap = 128, Sampling frequency

= 44.1kHz, and with Zero-padding excluded. Bitmap

is employed to plot the spectrogram matrix, using a
grayscale theme to maximize information-to-pixel ef-
ficiency. Noteworthy considerations include: (1) the
relevant frequency range, specifically 12kHz to 13kHz,
along with an additional frequency bin above and be-
low, is encompassed in the plotted spectrogram; (2)
the extracted spectrogram matrix’s size is 10×50. For
enhanced visibility on the bitmap, it is upscaled to
20×100 for display and archiving, and the training pro-
cess operates on this upscaled image.

2.3 GUI

The GUI of the App is as depicted in Figure 1.

Figure 1: Current GUI (Spectrograms displayed with
buttons to gather each corresponding cell)

2.4 Machine learning model

Given the two dimensional nature of the spectogram
extracted as main feature from the recording of the
chirp’s echo, we opted to implemented a CNN using
python based on PyTorch as opposed to a DNN. The
model is trained on a laptop Dell XPS15 equipped with
a Nvidia GeForce RTX 3050 Mobile and 32 GB of
RAM, requiring a training time of about 1 minute.

2.5 Description of CNN

The CNN consists of the following layers: conv1,

maxpool1, conv2, maxpool2, linear1, linear2.
A short description of each layer is given below:

• conv1: it applies 16 3×3 convolutional filters to
the spectogram with a stride of 1 and a padding
of 1. In addition, this layer applies to the 16 gen-
erated output images the ReLU function to intro-
duce some non linearity in the process. The ReLU

1



function was chosen instead of other non-linear ac-
tivation functions, such as Sigmoid, because it al-
lows to reach convergence faster.

• pool1: it applies a max pooling function with a
size of 2 and a stride of 2 to each output image
of conv1 layer. the pooling layer is important be-
cause, by reducing the size of the images, it makes
the training process less computational intensive
and prevents overfitting.

• conv2 & pool2: these layers are very similar to
conv1 and pool1. At the end of this layer, the
images are flattened and concatenated into a vec-
tor of size 4000 (5×25×32) to be fed to the fully
connected network.

• linear1: it is the first layer of the fully connected
network, which applies a linear function to an in-
put array of size 4000 (5×25×32) and reduces it
to an output array of length 64. At the end of
this layer a ReLU is again applied to the output to
introduce some non linearity in the network.

• linear2: this is the last layer of the fully con-
nected network which takes as input an array of
length 64 and outputs and array of 7, which repre-
sents the classes involved in the classification prob-
lem.

The hyperparameters of the network were fine tuned
experimentally to batch size= 32, epoches= 150 and
learning rate= 0.0001.

Finally, the loss function used to train the network
is CrossEntropy and the optimizer we chose is Adam.

2.6 CNN on Android

The trained CNN model, saved as a .ptl file us-
ing the optimize for mobile() function in PyTorch,
can be loaded into an Android application using the
LiteModuleLoader provided by the PyTorch library.
This allows the model to be deployed and used for lo-
cation detection on the Android platform.
To perform location detection, a sample input is pro-

vided to the loaded model in the Android application.
The input is processed by the model, and the class with
the highest score or probability is selected as the pre-
dicted location. This predicted location can then be
displayed on the screen of the Android device.

2.7 Training & Testing process

To create a usable dataset to train the network, we
collected hundreds of data samples for each cell from
C1 to C7. Specifically, we gathered 400 samples for C1,
C2, and C3, and 200 samples for the remaining cells.
However, the data collection process is still ongoing,
and we plan to gather a total of 1000 data samples for
each cell under different days and ambient conditions.

To ensure the validity of our study, we randomly
selected 20 samples for each cell to form the testing
set. The remaining samples are utilized for training
your model.

3 Evaluation setup

Each cell from C1 to C7 underwent real-time online
testing 20 times. The comprehensive outcomes of this
evaluation for all four cells can be found in the results
shown in Section 4.

4 Results

4.1 Accuracy

The evaluation phase reveals an approximate accuracy
of 80%. The Confusion matrix in Figure 2 indicates
that the accuracy of cells C1, C2, C3, and C7 is nearly
optimal. However, the model’s performance is rela-
tively poorer on cells C4, C5, and C6. This observation
can be attributed to the significant similarity between
these cells, as they consist of three identical spots sit-
uated on the stairs across three floors.

Figure 2: Confusion matrix of the evaluation results

4.2 Robustness

The model’s robustness is currently weak due to the
low ambient noise conditions during sample collection
and evaluation. To improve the model’s performance
in varying environments, a two-week training phase is
scheduled. By exposing the model to different settings
during training, it will become more resilient and better
able to handle real-world scenarios.

5 Conclusion

This report highlights the progress made in the Smart
Phone Sensing project during assignment 2, comparing
it to the previous report. Currently, the model has
been trained on 7 out of the total 16 cells present in
building 28.

The goal for assignment 3 is twofold:

• Improve network accuracy and robustness and ex-
tend it on all the available cells.

• Implement a novel technique (CNN+RNN) to im-
prove the performance of the network.

References

[1] Apache. Commons Math: The Apache Commons Mathe-
matics Library. https://commons.apache.org/proper/
commons-math/. Accessed: 2023-05-21. 2023.

2


