Smartphone Sensing 2023
App 1, Option 2
group 9
Samsung Galaxy A13, Android 13

1 Load balance

1.1 Tony, 5651794
e Android Method

— Chirp signal omitting

— Cross-correlation on chirp signal and

recorded audio

— Extract 100ms from 500ms audio recording
e Off-line Method

— FT on audio files and plot spectrum in
python.

e Tasks and Deliverable

— Full and processed spectrum of gathered data
in C1-C4
Giacomo Mazzola, 4872673
e Android Method

— Audio recording and storing to file

— Generation of probe and chirp signal
e Off-line Method

— FT on audio files and plot PSD and MFCC
in python.

e Tasks and Deliverable

— Record and store audio

2 Methods
2.1 Audio

This section records and extracts audio, including
starting and stopping functions, time detection for sig-
nal omission, and extraction of echo-only audio.

2.1.1 Recording To record and save audio on An-
droid, the app must first request RECORD_AUDIO per-
missions from the user. After granting permission,
the app can use the AudioRecord Java class with
parameters including a sample rate of 44100 Hz to
reach 20kHz, audio format of ENCODING_PCM_16BIT,
channel configuration of CHANNEL_IN MONO, and a
buffer size of 2«+MIN_BUFFER_SIZE obtained through the
getMinBufferSize() function.

2.1.2 Recording extracting To extract audio,
cross-correlation is used to determine the time when
the signal is omitted, and 100ms of audio is extracted
starting from the end of the omission. An array of size
equal to the maximum time lag! is created. The chirp
signal is then slid over the audio signal and the simi-
larity between the two signals is calculated and stored
in the array. The highest value in the array indicates
the time lag at which the two signals are most simi-
lar, corresponding to the time when the chirp signal is
omitted. Using this result, 100ms of audio after the
omission is extracted from the original audio file. No-
tably, each millisecond corresponds to 2 bytes of data
in the audio file due to the recorder’s CHANNEL_IN_MONO
setting. Results indicate that using cross-correlation to
determine the time of omission of signals are very pre-
cise.

2.2 Signals

Two types of signals are used in this project: a steady
probe signal at a given frequency, and a chirp signal
that varies in frequency over time. Both signals have
been implemented, and their performance will be eval-
uated in assignment 2.

2.2.1 Probe The probe signal is generated at 20kHz
for a duration of 2ms to make it inaudible to humans.
The signal is sampled at a frequency of 44100 Hz.

2.2.2 Chirp The chirp signal is also generated for a
duration of 2ms starting at 15kHz and ending at 20kHz
to make it inaudible to humans, with a sampling rate
of 44100 Hz.

2.3 Feature extraction

At present, feature extraction is performed offline in
Python, but for the next assignment, we plan to im-
plement it online on the Android device.

2.3.1 Spectrum The spectrum of an audio record-
ing is a graph that shows the power of the signal dis-
tributed in the frequency spectrum (in our case 15-
20kHz) as a function of time. We generate the spec-
trum from the .pcm file of the audio recording using
the libraries numpy and matplotlib.pyplot. FT is
performed within the function specgram().

2.3.2 PSD An alternative method to extract features
is to compute the Power Spectral Density (PSD), which
illustrates how the power of the signal is distributed

ILength of the audio signal minus the length of the chirp
signal



across the spectrum. The PSD can be computed using
Welch’s method with a window size of 1024 samples.

2.3.3 MFCC Mel-Frequency Cepstral Coefficients
(MFCC) is a widely used feature extraction technique
in speech and audio signal processing. Although we
were able to extract features from the signal using this
technique, we did not perform a thorough analysis to
tune its parameters. This technique will not be the
main one used, but it is a candidate to be chosen to
increase the novelty of our project.

3 Evaluation setup

We evaluated our app in the environment consisting
of Cells C1 to C4, as defined in the provided map of
Building 28. We conducted five recordings for each lo-
cation, facing towards the tag of that location, while
holding the phone vertically in one hand, just like a
typical user would. We limited ourselves to five record-
ings for each tag at this stage because our focus was
on implementing effective feature extraction and ana-
lyzing different parameters. In a subsequent stage, we
plan to conduct additional measurements, potentially
holding the phone in different orientations, to better
train the model.

4 Results

At this stage of the project, we have two results to
share: the feature extraction results and the GUI.

4.1 Feature extraction of cells

The primary feature extraction technique that we im-
plemented is the spectrum of the echo. Figure 1 dis-
plays the complete spectrum of the recorded audio,
while Figure 2 displays the processed spectrum that
only includes the echo of the chirp. Due to limited
space, result of C4 is displayed as an example.
Data are gathered in all four cells.

Figure 1: Complete spectrum in spot C4

Unfortunately, due to space limitations, this report
does not include any visual illustrations of the PSD
and the MFCC. Nonetheless, we will examine them
and consider incorporating them in the final report if
they will be used for training purposes.

4.2 GUI

A screenshot of the GUI can be seen in Figure 3. It is
still fairly simple as it will be improved in the future.

Figure 2: Processed spectrum of only echo in spot C4

Spectrogram

SHOW
SPECTROGRAM

START ACOUSTIC TRACK

Figure 3: Screenshot if the GUI

5 Discussion

For learning purposes, we developed two versions of the
app, one for the Samsung Galaxy A13 and another for
the Huawei Mate 20 Pro. We observed that the behav-
ior of the apps differed depending on the phone they
were running on. The most significant difference was
the delay introduced by the microphone when it started
recording. The Samsung had a delay of 20-30ms, while
the Huawei had a delay of almost 400ms. This presents
an opportunity to innovate our approach by investigat-
ing the reasons for these differences and designing an
app that can dynamically and autonomously account
for these variations, rather than having to develop mul-
tiple apps for different architectures.

It is also worth noting that the microphone recorded
two spikes present throughout the entire spectrum at
the beginning and end of the chirp. We attribute this
to the imperfections of the speakers, which vibrate in
an uncontrolled manner when turning on and off.



